MICROPUMP.

GEAR PUMPS - CAVITY VS SUCTION SHOE STYLE SELECTION GUIDE

PUMP ATTRIBUTE	CAVITY GD, GJ, GJR, GL, GM, GN	SUCTION SHOE GA, GAF, GB, GC	REMARKS
► Flow vs Differential Pressure		✓	 Pressure Loading in the Suction Shoe Pump creates the ability to maintain more consistent flow at high differential pressures. SUCTION SHOE OFFERS BEST IN CLASS PERFORMANCE
➤ Temperature Performance			 Suction Shoes provide thermal expansion space for gears and shoes, thus increasing temperature operational range. Gears/shoes of similar materials perform optimally over a large temperature range. SUCTION SHOE OFFERS BEST IN CLASS PERFORMANCE
► Flow Rate	✓	✓	 Both pump styles are positive displacement pumps and generate similar flow rates for a given gear size and geometry.
► Chemical Compatibility	✓		 Both pump styles are manufactured with materials that are chemically compatible with a wide range of fluids.
► Reversibility	✓		The Suction Shoe is not well suited for bi-directional flow.
▶ Dry Lift	✓		The Suction Shoe does not dry lift well due to lack of pressure loading.
▶ Wet Lift	✓	✓	Both pump styles can generate lift in a primed system.
➤ Torque Required	✓		► The high hydraulic efficiency of the Suction Shoe does require a small amount of additional torque over the Cavity style.